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Abstract: In this paper, the use of initial dips using functional near-infrared spectroscopy
(fFNIRS) for brain-computer interface (BCI) is investigated. Features and window sizes for
detecting initial dips are also discussed. Three mental tasks including mental arithmetic,
mental counting, and puzzle solving are performed in obtaining fNIRS signals from the
prefrontal cortex. Vector-based phase analysis method combined with a threshold circle, as a
decision criterion, are used to detect the initial dips. Eight healthy subjects participate in
experiment. Linear discriminant analysis is used as a classifier. To classify initial dips, five
features (signal mean, peak value, signal slope, skewness, and kurtosis) of oxy-hemoglobin
(HbO) and four different window sizes (0~1, 0~1.5, 0~2, and 0~2.5 sec) are examined. It is
shown that a combination of signal mean and peak value and a time period of 0~2.5 sec
provide the best average classification accuracy of 57.5% for three classes. To further validate
the result, three-class classification using the conventional hemodynamic response (HR) is
also performed, in which two features (signal mean and signal slope) and 2~7 sec window
size have yielded the average classification accuracy of 65.9%. This reveals that fNIRS-based
BCI using initial dip detection can reduce the command generation time from 7 sec to 2.5 sec
while the classification accuracy is a bit sacrificed from 65.9% to 57.5% for three mental
tasks. Further improvement can be made by using deoxy hemoglobin signals in coping with
the slow HR problem.

© 2016 Optical Society of America

OCIS codes: (170.2655) Functional monitoring and imaging; (300.0300) Spectroscopy; (070.5010) Pattern
recognition; (200.3050) Information processing.
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1. Introduction

The initial dip is an early small decrease of the concentration change of oxygenated
hemoglobin (AHbO) on the locus of neuronal activity after the presentation of stimuli [1-12].
Since its first reveal [1], a number of invasive/non-invasive studies showed its occurrence
prior to the increase of blood oxygenation [13-16]. The initial dip is closely related to the
neuronal metabolism and is a direct indication of the generation of a neuronal command. The
initial dip is found to be faster than the conventional hemodynamic response (HR) and
spatially more specific [17,18]. The aim of this study is to measure the initial dips in
association with three kinds of mental tasks from the prefrontal cortex, and classifies the tasks
using the initial dip related features to be introduced. The three mental tasks are mental
arithmetic (MA), mental counting (MC), and puzzle solving (PS).

Function near-infrared spectroscopy (fNIRS) is a non-invasive method to measure the
concentration changes of oxygenated hemoglobin (AHbO) and deoxygenated hemoglobin
(AHbR) by emitting near-infrared light (650~1000 nm) into the brain and measuring the
photons that passed through the brain tissues by detectors placed on the scalp with appropriate
distances. The principle of fNIRS has been described in detail in [19-24]. In fNIRS, to the
best of our knowledge, the first study that observed the delayed response by approximately 2
sec (in term of initial dip) was done by Jasdzewski et al. [11]: The initial dip was found in the
visual and motor cortex. In 2004, another study by Kato indicated that a fast oxygen response
is followed by a neuronal activity [12]. Kato measured an active oxygen exchange in
capillaries, which has been named to fast-oxygen response in capillary event (FORCE)
related to the neuronal responses. Akiyama and coauthors incorporated transcranial magnetic
stimulation (TMS) to the detection of an initial dip in the motor cortex, using NIRS imaging,
to enhance the spatial specificity [25]: They revealed distinctive biphasic responses in the
cortical oxygenation in the center of the primary motor cortex during the motor task, and
observed an early response occurring within 1 to 3 sec after the task initiation. Wylie et al.
also found the rising of HR at approximately 2 sec in the visual cortex during a contrast-
reversing checkerboard presentation [26]. Efforts related to a systematic detection of initial
dips were result in the vector-based phase analysis method [27-29]. Yoshino and Kato
provided an in-depth study on the classification of initial dips [27]. In their work, five types of
initial dips were classified using the vector-based phase analysis: The dips were divided into
canonical dips (phases I, 1), hypoxic-hyperemic dips (phase I11), and hypoxic-ischemic dips
(phases 1V, V) on the basis of phases in which the initial dips occur. However, in their study
the time required for the detection of initial dip was not clear. Hong and Naseer introduced a
threshold criterion on the phase diagram in detecting initial dips, and proposed the use of an
auto-regressive moving average with exogenous signals (ARMAX) model to predict g-step-
ahead occurrence of such dips in the measured fNIRS signals [30]: The authors were able to
reduce the time lag in detecting the initial dips to 0.9 sec.

BCI
fNIRS ’/'/ Preprocessing Initial dip detection = Channel selection
signal 1 . Features
acquisition | | Concentration Threshold-  |yeg Channel extraction in
1 changes in based vector averaging for [ 0~2.5 sec Combined
! HbO, HbR phase analysis initial dip window classifier
! = — (LDA, SVM,
| x AHb
P52 By acor,_ //\VHbT No Hemodynamic Feargresl N ANN)
i N (-value ete) ™ extraction in
. > 55? ER R : 2-7 sec window
i “\: M 20 30 // N
! -
| __ Stimulation __
. i o
. _E Motor, visual, !_ Feedback (audio, visual) |~ Real world Application Command
! sensory H scenario interface generation
R 1

Fig. 1. BCI framework: Application of initial dip detection.
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In fNIRS imaging for brain-computer interface (BCI), variation detection of
hemodynamic responses (i.e. increase/decrease in AHbO/AHbR) is the main focus for
neuronal-command interpretation [31]. BCI provides a communication link between the
hardware and the brain signals by translating the brain signals into meaningful commands to
actuate the hardware [32—35]. The main issue associated with using fNIRS signals for BCI
applications is the inherent 2 sec time delay from the neuronal activation [11,30,36]. For this
reason, researchers in fNIRS community used various features in 0~5, 2~7, 0~10, 0~15, 0~17,
and 0~20 sec time windows to classify the HRs from the same or different brain regions using
multi-class classification algorithms [37-47]. However, the use of HRs will result in time-
delayed command generations due to the delays in HRs. If the detection of initial dips from
the same or different brain regions is plausible, a quicker generation of commands is now
possible in the BCI framework as shown in Fig. 1.

In this paper, we investigate the feasibility of classifying three different mental activities
using the features associated with the initial dips measured from the prefrontal cortex. To
detect the initial dips, the vector-based phase analysis like Kato et al. is adopted [27-29].
However, a new threshold circle with a radius defined by the peak value of either AHbO or
AHDR signals during the resting state is investigated, which is in contrast with the work of
Hong and Naseer in that max (AHbO? + AHbR?)"? during the resting state was used [30]. For
classifying the initial dips related to the mental tasks, five features of HbO are tested: the
signal mean, peak magnitude (delta), signal slope, skewness, and kurtosis of the HbO signal
during 0~1, 0~1.5, 0~2, and 0~2.5 sec windows, respectively, are investigated. Linear
discriminant analysis (LDA) is used as a classifier for training and testing. Revealing the
obtained result briefly, the signal mean and peak value (delta) during 0~2.5 sec window
provided the best three-class classification accuracies of 57.5%. Also, we have investigated
the initial dip characteristics in different brain regions: prefrontal, motor, somatosensory, and
visual cortices. To the best of our knowledge, this is the first study investigating the
classification of initial dips in various brain regions including the prefrontal cortex. Finally, to
prepare the cases when initial dips are not detected, a secondary classification loop by using
the conventional HRs has been set, see Fig. 1. In this case, as features for classification, the
signal mean and the signal slope during the 2~7 sec window are to be used.

2. Method
2.1 Characteristics of initial dip

Figure 2 depicts the characteristics of initial dip (task: 10 sec): ti,;; defines the time duration

2

Concentration changes in HbO (uM)
o

a;

Initial dip Hemodynamic response stage
stage

"

1 | |
o 5 10 15 20 25

Time (sec)

Fig. 2. Characteristics of the canonical initial dip.
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when AHbO comes back to the baseline value after decreasing, t, denotes the time instance at
which the signal reaches its negative peak value, and ¢ (delta) is the (negative) peak value of
AHDO at t,. After the initial stage, t; denotes the time for the HR to reach its peak magnitude,
a, is the peak value, and a, is the magnitude of undershoot, see the definitions in Hong and
Nguyen [36]. In this study, the parameters of initial dip (i, to, J) are utilized for the
comparison of initial dips from the prefrontal, motor, somatosensory, and visual cortices.
Also, ¢ is used as a feature for classification.

2.2 Subjects

A total of 8 male subjects (mean age: 27.5 + 4.5) participated in the experiment. The subjects
were MS and Ph.D. students, Pusan National University. All subjects were healthy and
normal or corrected-to-normal vision. They had no history of any neurological or visual
disorder. A detailed description on the experimental procedure was given to all the subjects
prior to the experiment, and a consent was taken from all the subjects before conducting the
experiment. The experiment was conducted in accordance with the latest declaration of
Helsinki [48].

2.3 Experimental paradigms

In this study, we have conducted three experiments: prefrontal, motor/somatosensory, and
visual (see Figs. 3 and 4). In Experiment 1, the mental arithmetic (MA), mental counting
(MC), and a puzzle solving (PS) tasks related to the prefrontal cortex were investigated. In
Experiment 2, the right-hand index finger tapping (RHFT) and right-hand index finger poking
(RHFP) tasks associated with the motor and somatosensory cortices were performed. Finally,
Experiment 3 contains checkerboard presentation activities for the visual cortex.

Experiment 1 (prefrontal): 850 sec

MA MC PS
Rest session Rest session Rest session Rest
120 150 120 150 120 150 40

Time (sec)

Experiment 2 (motor, somatosensory): 580 sec

RHFT RHFP
Rest session Rest session Rest
120 150 120 150 40

Time (sec)

Experiment 3 (visual): 310 sec

Checkerboard
Rest session Rest
120 150 40
Time (sec)
Session: 150 sec
Task Task Task Task Task

Rest Rest Rest Rest Rest
10 20 10 20 10 20 10 20 10 20
Time (sec)

Fig. 3. Experimental paradigms: Experiment 1 consists of mental arithmetic (MA), mental
counting (MC), and puzzle solving (PS) tasks; Experiment 2 is composed of right-hand finger
tapping (RHFT) and right-hand finger poking (RHFP); Experiment 3 examines checkerboard
visualization; and a session consists of 5 trials.
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The subjects were seated on a comfortable chair. They were instructed to relax and avoid
body movement as much as possible. The stimuli with associated beep sounds were presented
on a monitor screen placed in front of the subject to avoid the onset delay. The experimental
paradigm for the three experiments is shown in Fig. 3. Experiment 1 consists of three sessions
of the prefrontal mental tasks with a resting state period of 120 sec before each session. The
resting period of 120 sec was used to avoid HR fluctuation as much as possible. Each session
contains five trials of 30 sec, in which 10 sec is used for task and 20 sec is used for rest.

Mental arithmetic (MA) task: During the MA task, the subjects were instructed to perform
backward subtraction of a two-digit number (between 15 to 25) from a three-digit number,
successively, by subtracting a new number from the previous answer [37,46,49,50]. A series
of mental arithmetic tasks were shown on the monitor screen, for instance, 550 - 15 = ?, 535 -
19=7,516 —21 =?, etc.

Mental counting (MC) task: The subjects were instructed to start backward counting from
a three-digit number shown on the monitor screen during the task period [42,50-52].

Puzzle solving task (PS): In the PS task, four pieces of Pusan National University logo
were presented to the participants in a random order. The subjects were instructed to
reconstruct the Pusan National university logo by flipping and rotating the pieces by their
thinking [50,53].

Experiment 2 consists of two sessions and each session has 5 trials. In the first session, the
subjects were instructed to start right-hand index finger tapping during the task period. In the
second session, poking on the subject’s right-hand index finger was done. In Experiment 3,
the subjects were advised to focus on the 8 Hz checkerboard flashing on the monitor during
the task period. It is noted that the data of Experiments 2 and 3 were used only for the
comparison of the initial dips in the prefrontal, motor/somatosensory, and visual cortices.

2.4 Signal acquisition and preprocessing

The frequency domain fNIRS system (ISS Imagent, ISS Inc., USA) was used to acquire the
brain signals from the prefrontal, motor/somatosensory, and visual cortices. The system
utilizes near-infrared light of two wavelengths (690 nm, 830 nm) to determine the
concentration changes of both HbO/HbR. Figure 4 shows the electrode placement for signal
acquisition in the prefrontal, motor/somatosensory, and visual cortices, in which individual

| Secm

Exp. 3

Exp. 1

Fig. 4. Electrode configuration in the prefrontal (Exp. 1), motor/somatosensory (Exp. 2), and
visual cortices (Exp. 3).
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brain areas were thoroughly covered by using 8 emitters and 2 detectors. For instance, the
detectors were placed on both sides of FPz for Experiment 1, and C3 for Experiment 2 in
accordance to the 10-20 International System for the prefrontal and motor/somatosensory
cortices respectively. For the visual cortex (Experiment 3), the detectors were placed near to
01 and O2 locations. A total of 16 channels were made using emitter-detector combination.
The distances between emitter-detector pairs and reference points (FPz, C3, O1, O2) are
shown in Fig. 4. In acquiring fNIRS signals, a sampling rate of 15.625 Hz was used.

The raw intensity data of AHbO and AHDR for all the channels were obtained with the ISS
Imagent data acquisition and analysis software (ISS-Boxy). Then, they were converted into
AHbO and AHbR using their official software, ISS-Boxy, with extinction coefficients gypo =
0.95 uMtem™, gpr = 4.93 pM*em™ for 690 nm wavelength and g0 = 2.135 uM*cm ™,
enpr = 1.791 },lM‘lcm‘1 for 830 nm wavelength in the modified Beer-Lambert law (MBLL)
[54]. The converted AHbO and AHbR are normally contaminated with physiological noises.
To remove physiological noises related to respiration and cardiac signals, a 4th order
Butterworth low-pass filter with a cutoff frequency of 0.15 Hz was used [23,39,45]. The low-
frequency drift from the data were then minimized by using a 4th order Butterworth high-pass
filter with a cutoff frequency of 0.033 Hz. The cutoff frequency of the high-pass filter was
selected as such because the longest possible time period between the onset of two
consecutive conditions is 30 sec. In this study, a trial consists of a 10 sec task and 20 sec
resting period, and therefore the stimulation frequency was approximately 1/30 sec = 0.033
Hz as in [55,56].

2.5 Vector-based phase analysis with a threshold circle

The detection of initial dips was done by employing the vector-based phase analysis with a
threshold circle as a decision criterion [30], in which two independent vectors defined by
AHbO and AHbR signals are orthogonally utilized [27-29]. Besides AHbO and AHbR, two
other components are defined as follows.

1

AHbT = —=(AHDbO + AHDR), 1
\/5( ) @)
1

ACOE = —= (AHbR — AHbO), 2
\/5( ) @

where AHbLT indicates the total hemoglobin concentration change and ACOE denotes the
cerebral oxygen change. Alternatively, these two components can be obtained by rotating the
vector coordinate plane defined by the AHbO and AHbR by 45° counterclockwise, see Fig. 5.
Now, the magnitude and the phase of a vector, p, in this plane can be calculated as follows
[27-30]:

| p| = /AHBO? + AHbR?, ©)

AHbR)
AHbO”

The ratio of ACOE and AHDT in (4) defines the degree of oxygen exchange since ACOE
represents the oxygen exchange in the blood vessels and thus representing the neuronal
activity [28]. Using the four indices, vector-based phase analysis is divided into eight phases.
Figure 5 shows the phase classification of vector-based phase analysis with a threshold circle.

ACOE
Zp=tant(——=)+45°=tan™* 4
p (AHbT) ( (4)
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Fig. 5. Vector plane with a threshold circle [27-30].

In Fig. 5, Phase 1 (0 < AHbR < AHbO, ACOE < 0 < AHbT) is the hyperoxia phase. It is a
dip phase in which ACOE < 0. Phase 2 (0 < AHbO < AHbR, 0 < ACOE < AHbT), Phase 3
(AHbO < 0 < AHDbR, 0 < AHbT < ACOE), Phase 4 (AHbO < 0 < AHbR, AHbT < 0 < ACOE),
and Phase 5 (AHbO < AHbR < 0, AHbT < 0 < ACOE) are hypoxic initial dip phases in which
ACOE > 0. The hyperoxia non-initial dip phases are Phase 6 (AHbR < 0 < AHbO, ACOE <0
< AHDT), Phase 7 (AHbR < 0 < AHbO, ACOE < AHbT < 0), and Phase 8 (AHbR < AHbO <
0, AHbT < ACOE < 0). Phases 2 to 5 indicate decreases in AHbO in the blood vessels as
ACOE > 0 represents deoxygenation in the capillaries as a result of oxygen consumption by
the nerve cells. On the other hand, ACOE < 0 indicates that the oxygen-containing red blood
cells are being supplied by the arteries and represent the high level of oxygenation in the
blood vessels [27,30].

The use of a threshold circle as a decision criteria incorporated in the vector-based phase
analysis helps to minimize possible misidentifications of initial dips. The radius of a threshold
circle for each channel is determined by detecting the peak value in AHbO or AHbR signal
(i.e., max(HbO) or max(HbR)) in the final 60 sec of the initial resting period (i.e., 120 sec).
MATLAB™ function max was used to determine the peak value in AHbO and AHDR signal.
The maximum value among them was then selected. The initial dip instance is concluded
when the magnitude of the signal breaks out the threshold circle while its phase lies within the
dip phases (i.e., phases 1 to 5).

2.6 Features extraction and classification

The channels in which initial dips were detected by the vector-based phase analysis were
averaged for the given task. Four different time windows (i.e., 0~1, 0~1.5, 0~2, and 0~2.5
sec) were investigated for comparison of the classification accuracies of initial dips. The
signal mean, delta, signal slope, skeweness, and kurtosis values were computed for each
window. For this, mean, min, polyfit, skew, and kurt functions available in MATLAB™ were
used, in which the min function was used to find the delta value. Then, the extracted features
of each subject were normalized between 0 and 1 by the following equation [40,49]:

r_ y_mln(y) (5)
max(y) —min(y)

where y e R" represent the original values of the features, y' is the rescaled values between

0 and 1, max(y) is the maximum value, and min(y) is the minimum value. The rescaled
features were then classified using LDA. LDA is a linear classifier that intends to find a
separating hyperplane by maximizing the distance between the classes' means and minimizing
the within-class variance to classify diverse classes of data [20,49]. LDA is used in various
BCI studies due to its ease of use and fast execution time. To determine the classification
accuracies, 5-runs of 5-fold cross-validation were used. The 5-fold cross-validation randomly
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breaks the data into 5 equal sets and used 4 sets for training and 1 set for testing. The process
was repeated for five times and the mean accuracy was taken. Furthermore, to measures the
performance of the classifier, the true positive rate (TPR), true negative rate (TNR), and false
positive rate (FPR) were calculated for three-class classification as follows [57]:

TPR = _TP : (6)
TP+ FN
TNR = _TN : (7)
TN +FP
FPR :izl—TNR, (8)
FP +TN

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false
negative respectively. The values of TP, TN, FP, and FN were calculated from the confusion
matrix [57]. A Matlab™ function, classperf, was used to create the confusion matrix. Finally,
the receiver operating characteristic (ROC) curve was drawn using the TPR and FPR for the
MA, MC, and PS tasks.

3. Results

Figure 6 shows the phase portrait analysis of the mental arithmetic task (Trial 1) of Subject 1.
It can be seen that the initial dips were detected in Channels 2, 4, 8, 9, 10, and 11. Table 1
summarizes the channels in which initial dips were detected for three tasks and eight subjects.
To further confirm whether the channels showing initial dips were really active or not, the t-
values were computed by using the MATLAB function, robustfit [39,45,58]. This function
compares the averaged HbO of each channel with the designed HR and returns the t- and p-
values. The criteria for concluding activeness were i) t-value > critical t-value (t.) and ii) p-
value < 0.05. In this study, t.; was set to 1.648, as computed from the degree of freedom of
the data (i.e., trial period = 30 sec, the number of data points N = 30 x 15.625 = 468, N-1 =
467) and the statistical significance level (i.e., 0.05 for one-tailed test). The t-values of the
initial dip detected channels in the vector phase analysis were higher than t... Then, the initial
dip detected channels were averaged for each given task. Figure 7 shows the averaged HbOs
over all 8 subjects and 5 trials, and their standard deviation for individual MA, MC and PS
task. The shaded areas along the mean values represent their standard errors.

First, for the conventional HRs, the three-class classification of three tasks was performed
by using the signal mean and signal slope, as features, for 2~7 sec window, which is tabulated
in Table 2. The average classification accuracy of 64.9% was obtained. It is noted that the
overall classification accuracies are significantly higher than the chance level (i.e. 33.3%).
Particularly, the classification accuracies of Subs. 1 and 8 are higher than the recommended
classification accuracy needed for BCI (i.e., 70%).

Second, Table 3 shows the averaged classification accuracies based upon the signals
during the initial dip period of 0~2.5 sec window, in which two feature combinations out of
five features (mean, slope, delta, skewness, and kurtosis) are compared. It is noted that the
combination of signal mean and delta gives a significantly higher classification accuracy,
57.5%, than others. It is seen that the classification accuracies of other combinations still
show a higher value than the chance level of the three-class classification. Table 4 shows the
individual subjects’ classification accuracies in 0~1, 0~1.5, 0~2, and 0~2.5 sec windows
using the signal mean and the delta as features.

From Table 4, it is seen that the 0~2.5 sec window gives the best classification accuracy
for each subject. There is a slight difference in the accuracies of 0~2 and 0~2.5 sec windows,
but Sub. 6 in 0~2 sec window case showed almost the chance level. However, in the case of
0~2.5 sec window, all the classification accuracies were far higher than the chance level.
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Particularly, Subs. 1 and 8 showed higher classification accuracy than required for BCI (i.e.,
70%), whereas those of Subs. 3 and 7 were higher than 60%. Table 5 provides a comparison
of the classification accuracies based upon initial dip signals of 0~2.5 sec window and those
based upon HRs of 2~7 sec window.
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Fig. 6. Phase portraits (from -5 to 15 sec) of mental arithmetic task (Sub. 1).
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Table 1. List of channels in which initial dip has been detected.

Subjects Tasks Channels Subjects Tasks Channels
Mental arithmetic 2,4, 8,9, 10, 11 Mental arithmetic 2,3,4,10,11,12
1 Mental Counting 2 4lf fz 10, 5 Mental Counting 2,4,8,10, 11,12
. . 1,2,3,4,7,8, 10,
Puzzle solving 2,3,4,8,11 Puzzle solving 11,12, 16
Mental arithmetic 3,4, 8,9, 10, 11 Mental arithmetic 2,4,8,10,11
2 Mental Counting 27, 9ié0, 1, 6 Mental Counting 4,8,10
Puzzle solving 2, 3111812 10, Puzzle solving 2,4,8,10,11, 12
. . 2,3,4,7,8,9, . .
Mental arithmetic 10,11, 16 Mental arithmetic 4,8,10,12,16
3 Mental Counting 2, 3141 7128 10, 7 Mental Counting 4,5,6,10,11, 12
Puzzle solving 23 7’185;10’ 1L, Puzzle solving 2,3,4,10
Mental arithmetic ~ 2,3,6, 7,10, 11 Mental arithmetic 4,8,10,11, 16
4 Mental Counting 3 51; fS 1, 8 Mental Counting 4,8, 10, 16
Puzzle solving 2,3,4,8,10, 16 Puzzle solving 1,2,3,4,10,11,12

4
x10
4

Mental arithmetic 1,\[;;_'
I std of MA fasks

Mental counting (MC)
[ Std of MC tasks 1
Puzzle solving (PS)

Std of PS tasks

Concentration change in HbO (uM*cm)

Activation

-4l i |
[ s 10 15 20 25 30
Time (sec)

Fig. 7. The averaged HbOs and their standard deviations for MA, MC, and PS tasks.

Table 2. Classification accuracies of three tasks based on hemodynamic responses.

Subjects Classification accuracies (%) (2-7 sec)
1 86.6
2 53.3
3 66.6
4 53.3
5 40
6 66.6
7 66.6
8 86.6
Average 64.9+16.2
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Table 3. Classification accuracies of three tasks for various feature combinations.

Table 4. Classification accuracies of three tasks for various window sizes (used features:

(Window: 0 ~2.5 sec)

Feature combinations

Average classification accuracies

(%)
Mean, slope 51.2+175
Mean, skewness 541+ 145
Mean, kurtosis 53.1+16.1
Mean, delta 57.5+14.9
Slope, skewness 40.8+16.8
Slope, kurtosis 36.6 + 18.5
Slope, delta 54.1+14.8
Skewness, kurtosis 40.0 +£16.3
Kurtosis, delta 54.1+9.7
Skewness, delta 54.8 +16.6

mean, delta).
Subjects Classification accuracies (%)
0~1 sec 0~1.5 sec 0~2 sec 0~2.5 sec
1 53.3 53.3 60 73.3
2 46.6 53.3 53.3 53.3
3 33.3 46.6 53.3 60
4 43.3 46.6 46.6 46.6
5 40 40 40 40
6 33.3 33.3 33.3 40
7 56.6 60 66.6 66.6
8 60 73.3 76.6 80
mean 458+10.2 50.8+123 53.7+14.0 57.5+149

Table 5. Comparison between initial-dip-window and HR-window.

Classification accuracies (%)

Subjects Initial dip based HR based
(0~2.5 sec window) (2~7 sec window)
1 73.3 86.6
2 53.3 53.3
3 60 66.6
4 46.6 53.3
5 40 40
6 40 66.6
7 66.6 66.6
8 80 86.6
mean 57.5+14.9 64.9£16.2

Figures 8 and 9 show the ROC curves for the MA, MC, and PS tasks for HRs and initial
dips in 2~7 sec and 0~2.5 sec windows, respectively. The TPR and FPR were calculated for

each subject using the confusion matrix. The ROC curves were then drawn for multi-class
classification using the averaged TPR and FPR over all subjects for each task. The area under
the curve (AUC) was calculated by trapezoidal method. The MATLAB™ function trapz were

used. For HR-based classification, the AUC were 0.80, 0.72, and 0.70 for MA, MC, and PS
tasks, respectively. The AUC for the initial dip based classification for MA, MC, and PS tasks
were 0.75, 0.64, and 0.60, respectively. In both cases, the LDA classifier shows the
performance above the random guess line for all tasks.
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Fig. 8. Receiver operating characteristic (ROC) curves for HR-based classification of 2~7 sec
window using the averaged TPR and FPR for the MA, MC, and PS tasks over all subjects.

3.1 Comparison of initial dips in various brain cortices

The initial dips in the motor/somatosensory and visual cortices were also detected by using
the vector phase analysis method with proper threshold circles. For each task, the signals that
have depicted initial dips were averaged over trials and subjects. Figure 10 shows the
averaged HbOs of MA, MC, PS, RHFT, RHFP, and checkerboard tasks and their standard
deviations.

The characteristic parameters (see Fig. 2, Section 2.1) were calculated from the averaged
HbOs in Fig. 10. Those parameters for individual tasks are collected in Table 6. The time to
the peak magnitude in the initial dip stage, t,, is almost the same for all tasks. However, there
is a slight difference in the duration of initial dip (t;,;y) among the tasks. In the somatosensory
cortex, it is noteworthy to mention that kind of initial dips were detected in a few trials, but it
can be said that there is no initial dip phenomenon in the somatosensory cortex (the averaging
gives almost zero). Further investigation is needed for this issue. Finally, the initial dip
magnitude of the RHFT task (i.e., —0.89529) was higher than any other tasks.

4. Discussion

In this paper, we have utilized the vector-based phase analysis method and the threshold
circle criterion to detect the occurrence of initial dips from the prefrontal cortex during the
MA, MC, and PS tasks. The advantage of using a threshold circle in vector-phase analyses is
that it helps to minimize a false identification of initial dips from the fNIRS signals [30]. In
this paper, the threshold value for each channel was set to the maximum peak value of either
AHbO or AHDbR during the resting period just ahead of the task. The use of a peak value of
{AHbO, AHbR} instead of max(AHbO? + AHbR?)"? during the resting state can reduce the
radius of a threshold circle, and consequently enables an earlier detection of initial dips.
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Fig. 9. ROC curves for the initial dip based classification in 0~2.5 sec window using the
averaged TPR and FPR for the MA, MC, and PS tasks over all subjects.

The novelties of this paper exist in the demonstration of the use of initial dips for BClI,
suggestion of initial dip features (signal mean, delta), and determination of window size (2.5
sec) for classification of three mental tasks in the prefrontal cortex, which allows a quicker
command generation than any conventional HR-based BCI. The early fNIRS studies based
upon HRs had to use a large window size: For instance, 0~5, 2~7, 0~10, 0~15, 0~17, and
0~20 sec [37-47]. In this case, due to the inherent delay of 2 sec of initial dip, the 2~7 sec
window was shown to provide the best classification performance [46]. Also, the combination
of signal mean and signal slope in two class classification based upon HRs for various
prefrontal tasks was shown to generate the best accuracy in classification [20,46,51,59]. In
Fig. 10, the fNIRS signals of MA tasks were stronger than MC and PS tasks. Naturally, the
MC tasks show weaker signals due to that they do not require heavy cognitive load. This
finding is consistent with the previous studies [42,51].

For the purpose of comparing the proposed method (i.e., initial dip based classification)
and the conventional HR-based method, we performed a similar analysis using the HR signals
as well. Adopting the tips from the previous studies in this case, the window size was chosen
to be 2~7 sec and the features used were signal mean and signal slope during the 2~7 sec
period. Upon these, the average classification accuracy for MA, MC, and PS tasks was
64.9%, see Table 5. Individual subjects' classification accuracies were all higher than the
chance level (i.e., 33.3%). Typically, the classification accuracies of Subs. 1 and 8 were
higher than the required classification accuracy for BCI (i.e., 70%).

Regarding the HR based classification, the work of Power et al. for 3-class classification
(mental arithmetic, mental singing, and rest) achieved an average classification accuracy of
56.2% [38]. Similarly, Herf et al. reported an average ternary classification accuracy of 50.3%
in differentiating different levels of workload from the prefrontal measurements [60]. Hong et
al. obtained average three-class classification accuracy of 75.6% using the prefrontal and
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Fig. 10. The averaged HbO and its standard deviation for MA, MC, PS, RHFT, RHFP, and
checkerboard tasks.

Table 6. Initial dip characteristic parameters of MA, MC, PS, RHFT, RHFP, and
checkerboard tasks.

L Initial dip peak time Initial dip duration Initial dip peak

Activity t, (sec) tinit (S€C) 5 (107
Mental arithmetic (MA)
(prefrontal cortex) 217 403 ~0.57305
Mental counting (MC)
(prefrontal cortex) 2.17 3.90 ~0.17864
Puzzle solving (PS)
(prefrontal cortex) 2.30 4.22 -0.32500
Right-hand index finger tapping
(RHFT) (motor cortex) 198 358 089529
Right-hand index finger poking ) ) )
(RHFP) (somatosensory cortex)
Checkerboard 217 3.90 ~0.64863

(visual cortex)

motor cortex signals [46]. Schuldo and Chau achieved an average classification accuracy of
71.7% for verbal fluency, stroop, and rest tasks from the prefrontal and parietal cortices [61].
It is noted that two brain regions and distinctive tasks were used in [46] and [61], whereas
only the prefrontal cortex with similar mental tasks were examined in our work, yielding
64.9%.

For the initial dip classification, we investigated five different features (mean, slope, delta,
skewness, kurtosis) and four different window sizes (0~1, 0~1.5, 0~2, and 0~2.5 sec). If using
only two features, the combination of signal mean and delta provided the average
classification accuracy of 57.5% using 0~2.5 sec window, which is the best. Recalling that
several previous studies indicate that the initial dip peaks occur at around 2 sec and complete
around 4 sec [1-18], the window size of 0~2.5 sec is the smallest size that have ever been
used in fNIRS studies. Also, since only 64.9% with 7 sec delay was obtained from the HR
case, 57.5% with 2.5 sec delay using initial dips is a significant improvement. We also
observed that the initial dips of MA, MC and PS tasks occurred in the form of hypoxic-
ischemic type (i.e., decreased AHbO), which is consistent with the previous studies [27,28].
The average initial dip magnitude of MA tasks was the largest among the three tasks.
Discussing individual subjects’ performance, Subs. 1 and 8 achieved a sufficiently higher
classification accuracy required for BCI applications. Also, Subs. 3 and 7 showed a
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classification accuracy higher than 60%. The overall classification accuracy of most subjects
was greater than the chance level.

It is also noted that the initial dip phenomenon did not occur in some trials. Therefore, the
accuracy was evaluated only for those HRs in which the initial dip appeared. Several factors
can be discussed for this issue, for example, caffeine reduces the possibility of detection of
initial dip [62,63]. Also, variation of classification accuracy among subjects can be due to
individual differences [64].

The parameters of the initial dips detected from the prefrontal cortex were compared with
those of motor/somatosensory, and visual cortices, see Table 6. This shows that the vector
phase analysis with a threshold circle can successfully detect initial dips in various brain
regions. However, in the case of somatosensory, the initial dip was not clearly identified.
When performing averaging, the parametric values were indistinctive, which is consistent
with [36]. The initial dips in most brain regions were found peaking during approximately 2-
2.5 sec, which is in line with the previous fNIRS and fMRI studies [1-18, 65]. The
completion time of initial dip period varies from 3.5 to 4.5 sec. The magnitudes were also
varied in different brain regions. Therefore, a further investigation is needed to fully
investigate optimal features to distinguish the initial dips for different brain regions.

The following limitations of this study are discussed as follows. In this work, only HbO
signal was investigated for examining the signal mean, delta, signal slope, skewness, and
kurtosis. Therefore, other features including HbR, COE, and HbT should be investigated for
further improvement of initial dip classification accuracy. The second limitation of our study
is the insufficient number of subjects. The results would be more acceptable if using a large
number than eight. The third is that only a linear classifier (LDA) was used in this work. A
more advanced classifier can improve the classification accuracy.

5. Conclusions

In this paper, a systematic method for using initial dips appearing in fNIRS signals upon brain
activities for BCI applications was demonstrated. Three mental tasks including mental
arithmetic, mental counting, and puzzle solving tasks in association with the prefrontal cortex
were performed. The vector-based phase analysis method with a peak HbO value obtained
from the resting period were used in detecting the initial dips occurrence for the three mental
tasks. While the average classification accuracy of 64.9% after 7 sec was obtained by using
the conventional hemodynamic response method, the proposed method has achieved 57.5%
after 2.5 sec by using the initial dip parameters for three classes. The results are encouraging
and show a great potential in reduction of window size of fNIRS-based BCI within 0~2.5 sec,
resulting in a significant temporal resolution improvement.
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